“FMGP_Pub” — 2014/10/16 — 11:11 — page 1 — #15

on e
What This Book Is About

It is impossible to know things of this world
unless you know mathematics.

Roger Bacon, Opus Majus

This book is about programming, but it is different from most programming
books. Along with algorithms and code, you’ll find mathematical proofs and his-
torical notes about mathematical discoveries from ancient times to the
20th century.

More specifically, the book is about generic programming, an approach to
programming that was introduced in the 1980s and started to become popular
following the creation of the C++ Standard Template Library (STL) in the 1990s.
We might define it like this:

Definition 1.1. Generic programming is an approach to programming that fo-
cuses on designing algorithms and data structures so that they work in the most
general setting without loss of efficiency.

If you've used STL, at this point you may be thinking, “Wait a minute, that’s all
there is to generic programming? What about all that stuff about templates and
iterator traits?” Those are tools that enable the language to support generic pro-
gramming, and it’s important to know how to use them effectively. But generic
programming itself is more of an attitude toward programming than a particular
set of tools.

We believe that this attitude—trying to write code in this general way—is
one that all programmers should embrace. The components of a well-written
generic program are easier to use and modify than those of a program whose data
structures, algorithms, and interfaces hardcode unnecessary assumptions about

1



“FMGP_Pub” — 2014/10/16 — 11:11 — page 2 — #16

2 Chapter 1: What This Book Is About

a specific application. Making a program more generic renders it simultaneously
both simpler and more powerful.

1.1 Programming and Mathematics

So where does this generic programming attitude come from, and how do you
learn it? It comes from mathematics, and especially from a branch of mathemat-
ics called abstract algebra. To help you understand the approach, this book will
introduce you to a little bit of abstract algebra, which focuses on how to reason
about objects in terms of abstract properties of operations on them. It’s a topic
normally studied only by university students majoring in math, but we believe
it’s critical in understanding generic programming.

In fact, it turns out that many of the fundamental ideas in programming came
from mathematics. Learning how these ideas came into being and evolved over
time can help you think about software design. For example, Euclid’s Elements,
a book written more than 2000 years ago, is still one of the best examples of how
to build up a complex system from small, easily understood pieces.

Although the essence of generic programming is abstraction, abstractions
do not spring into existence fully formed. To see how to make something more
general, you need to start with something concrete. In particular, you need to
understand the specifics of a particular domain to discover the right abstractions.

The abstractions that appear in abstract algebra largely come from concrete
results in one of the oldest branches of mathematics, called number theory. For
this reason, we will also introduce some key ideas from number theory, which
deals with properties of integers, especially divisibility.

The thought process you'll go through in learning this math can improve
your programming skills. But we'll also show how some of the mathematical
results themselves turn out to be crucial to some modern software applications.
In particular, by the end of the book we'll show how some of these results are used
in cryptographic protocols underlying online privacy and online commerce.

The book will move back and forth between talking about math and talking
about programming. In particular, we'll interweave important ideas in mathe-
matics with a discussion of both specific algorithms and general programming
techniques. We'll mention some algorithms only briefly, while others will be
refined and generalized throughout the book. A couple of chapters will con-
tain only mathematical material, and a couple will contain only programming
material, but most have a mixture of both.

1.2 A Historical Perspective

We've always found that it’s easier and more interesting to learn something if it’s
part of a story. What was going on at the time? Who were the people involved,



“FMGP_Pub” — 2014/10/16 — 11:11 — page 3 — #17

Prerequisites 3

and how did they come to have these ideas? Was one person’s work an attempt to
build on another’s—or an attempt to reject what came before? So as we introduce
the mathematical ideas in this book, well try to tell you the story of those ideas
and of the people who came up with them. In many cases, we've provided short
biographical sketches of the mathematicians who are the main characters in our
story. These aren’t comprehensive encyclopedia entries, but rather an attempt to
give you some context for who these people were.

Although we take a historical perspective, that doesn't mean that the book is
intended as a history of mathematics or even that all the ideas are presented in
the order in which they were discovered. We'll jump around in space and time
when necessary, but we'll try to give a historical context for each of the ideas.

1.3 Prerequisites

Since alot of the book is about mathematics, you may be concerned that you need
to have taken a lot of math classes to understand it. While you’ll need to be able to
think logically (something you should already be good at as a programmer), we
don’t assume any specific mathematical knowledge beyond high school algebra
and geometry. In a couple of sections, we show some applications that use a little
linear algebra (vectors and matrices), but you can safely skip these if you haven’t
been exposed to the background material before. If youre unfamiliar with any
of the notation we use, it’s explained in Appendix A.

An important part of mathematics is being able to prove something formally.
This book contains quite a few proofs. You'll find the book easier to understand
if you've done some proofs before, whether in high school geometry, in a com-
puter science class on automata theory, or in logic. We've described some of the
common proof techniques we use, along with examples, in Appendix B.

We assume that if you're reading this book, you're already a programmer. In
particular, you should be reasonably proficient in a typical imperative program-
ming language like C, C++, or Java. Our examples will use C++, but we expect
you'll be able to understand them even if you've never programmed in that lan-
guage before. When we make use of a construct unique to C++, we explain it
in Appendix C. Irrespective of our use of C++, we believe that the principles
discussed in this book apply to programming in general.

Many of the programming topics in this book are also covered from a dif-
ferent perspective, and more formally, in Elements of Programming by Stepanov
and McJones. Readers interested in additional depth may find that book to be
a useful companion to this one. Throughout this book, we occasionally refer
interested readers to a relevant section of Elements of Programming.



“FMGP_Pub” — 2014/10/16 — 11:11 — page 4 — #18

4 Chapter 1: What This Book Is About

1.4 Roadmap

Before diving into the details, it’s useful to see a brief overview of where we’re

headed:

e Chapter 2 tells the story of an ancient algorithm for multiplication, and how
to improve it.

e Chapter 3 looks at some early observations about properties of numbers, and
an efficient implementation of an algorithm for finding primes.

e Chapter 4 introduces an algorithm for finding the greatest common divisor
(GCD), which will be the basis for some of our abstractions and applications
later on.

o Chapter 5 focuses on mathematical results, introducing a couple of important
theorems that will play a critical role by the end of the book.

e Chapter 6 introduces the mathematical field of abstract algebra, which pro-
vides the core idea for generic programming.

o Chapter 7 shows how these mathematical ideas allow us to generalize our mul-
tiplication algorithm beyond simple arithmetic to a variety of practical pro-
gramming applications.

o Chapter 8 introduces new abstract mathematical structures, and shows some
new applications they enable.

e Chapter 9 talks about axiom systems, theories, and models, which are all
building blocks of generic programming.

e Chapter 10 introduces concepts in generic programming, and examines the
subtleties of some apparently simple programming tasks.

o Chapter 11 continues the exploration of some fundamental programming
tasks, examining how different practical implementations can exploit theo-
retical knowledge of the problem.

e Chapter 12 looks at how hardware constraints can lead to a new approach for
an old algorithm, and shows new applications of GCD.

o Chapter 13 puts the mathematical and algorithmic results together to build an
important cryptography application.

o Chapter 14 is a summary of some of the principal ideas in the book.

The strands of programming and mathematics are interwoven throughout,
though one or the other may lie hidden for a chapter or two. But every chapter
plays a part in the overall chain of reasoning that summarizes the entire book:



“FMGP_Pub” — 2014/10/16 — 11:11 — page 5 — #19

Roadmap

To be a good programmer, you need to understand the principles of
generic programming. To understand the principles of generic pro-
gramming, you need to understand abstraction. To understand ab-
straction, you need to understand the mathematics on which it’s based.

That’s the story were hoping to tell.



